

Before fitting Dairy Flo:-

Temperature of milk as delivered to Vat = 18 Degrees Celsius
Quantity of Milk delivered per day (avg. over year) = 4000 ltrs
Number of days milked each year = 300

Calories Required = mass(g) x Temperature Change required

$$\begin{aligned}\text{Calories Required} &= 4000000 * (18 - 7) \\ &= 44000000\end{aligned}$$

Watt Hours = Calories * 0.001163

$$= 51172 \text{ Wh}$$

$$\mathbf{= 51.172 \text{ Kwh per day} = 15351.6 \text{ Kwh per year}}$$

After fitting Dairy Flo:-

Temperature of milk as delivered to Vat = 14 Degrees Celsius
Quantity of Milk delivered per day (avg. over year) = 4000 ltrs
Number of days milked each year = 300

Calories Required = mass(g) x Temperature Change required

$$\begin{aligned}\text{Calories Required} &= 4000000 * (14 - 7) \\ &= 28000000\end{aligned}$$

Watt Hours = Calories * 0.001163

$$= 32564 \text{ Wh}$$

$$\mathbf{= 32.564 \text{ Kwh per day} = 9769.2 \text{ Kwh per Year}}$$

$$\mathbf{15351.6 - 9769.2 = 5581.8 \text{ KWh saved Per Year}!!}$$

Assuming that the refrigeration equipment can give 2KWh of cooling for every 1KWh of electricity usage then Total Annual Power Savings attributable to the Dairy Flo are **2790.9 Kwh**

At a cost of (say) 21.1c per Kwh this is a saving to the end user of \$588.88c per Annum.